
UNCLASSI FIED

40 8 673'
AD wm"" --

DEFENSE DOCUMEINTATION CENTER
FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, AtEXANDRIA, VIRGINIA

US

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose

other than in connection with a definitely related

government procurement operation, the U. S.

Government thereby incurs no responsibility, nor any

obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way

supplied the said drawings, specifications, or other

data is not to be regarded by implication or other-

wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights

or permission to manufacture, use or sell any
patented invention that may in any way be related

thereto.



REPORT NO. RS-316

408 673

EFFECT OF ACCURACY LIMITATIONS IN THE AIRBORNE

DIGITAL COMPUTER ON THE CONVERGENCE OF A STAGEWISE

MIDCOURSE TRAJECTORY DETERMINATION PROCEDURE

13 June 1963

AEROSPACE GROUP

HUGHES JNL A
H U G H E A I RC IIA FT C OMPAN Y

CULVER CITY , CALIFORNIA Tf ilA A



EFFECT OF ACCURACY LIMITATIONS IN THE AIRBORNEL DIGITAL COMPUTER ON THE CONVERGENCE OF A STAGEWISE

FMIDCOURSE TRAJECTORY DETERMINATION PROCEDURE)&V

N A. Holick,

Ii ~)RS/316
]-

13 Junj&= (),v,

I
I
r

Hughes Aircraft Company •Culver City, California

[



[ K ABSTRACT

The effect of round-off errors on the estimation of position and

velocity in midcourse navigation heeeen analyzed. The analysis is

based on Kalman's approach to linear filtering and prediction. 'Com-

putation noise& appears to be an additional random force in the dynamic[ system, and may affect both convergence and equilibrium of the sequen-

tial estimation procedure significantly.

The analysis k.S en applied to a satellite trajectory estimation

system. Axes and area of the error ellipse (ellipse of concentration)

ha4.6ý expressed in terms of word length, time interval between

observations, and number of integration steps.
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1. INTRODUCTION

I Selection of the wordlength in digital computers used in guidance

and navigation systems is infrequently considered to be a serious design

problem.

The decision is most often based on whether I or 2 instructions

1. should be stored in one memory word, and how many digits of the in-

struction word should be allotted to the order code and address. Index

t modification schemes for shortening the address may have more effect

on the wordlength selection than accuracy requirements.

f. Reliability considerations increase the importance of wordlength

studies significantly, especially if the digital computer is to be used on

board a space vehicle and operates independently of ground communica-

tions. In optimizing the hardware for such a system, it is necessary to

relate computer functions (i. e. accuracy) to the performance of the whole

j system, and to design the hardware so that intolerable degradations in

performance resulting from failures are minimized or eliminated. A typ-

I ical example of this realistic system optimization philosophy is the "Word

Split Technique". It is a technique whereby a digital word is automati-

cally split after a failure and the failing part is excluded from the opera-

tion8 ' 9 . Extensive studies at Hughes Aircraft Company 9 ' II have shown

that application of a "failure tolerance concept" instead of a pure redun-

dancy concept may very likely lead to significant hardware savings.

However, application of the failure tolerance concept to real time data

requires a thorough analysis of the performance degradation caused by

dropping the least significant word half.

The objective of this paper is to analyze the effect of computer

accuracy limitations on system performance during midcourse naviga-

tion. The purpose is two fold:

a. To supply the tools for determining the error contributions

1_ of a (given) digital computer in midcourse navigation.

b. To establish whether degraded operational modes in extremely

j] long range space missions may be tolerated

1
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Several papers have been published recently which describe the

application of concepts from statistical filter theory to inflight deter-

mination of position and velocity of a (manned) space vehicle for the

purpose of midcourse guidance. The spaceborne digital computer im-

11plements a dynamic time varying filter which weights the incoming

observations in an "optimal" sense and produces an up to date optimal

estimate of any desired set of state variables.

The basic theory quite frequently applied, is described in refer-

ences (1) and (Z) where it is shown that every solution of the variance

equation converges to an equilibrium point, and that the equilibrium

exists if certain conditions are satisfied. The variance equation is

described as a stable computational method and is expected to be in-

sensitive to round-off errors. Application of the theorems and hypoth-

esis in (1) and (Z) would always lead to the conclusion that computation

errors are negligible compared to instrument anomalies. It seems

j questionable, however, to draw any conclusions about the propagation

of round-off errors from a theory which does not permit such errors in

I the basic dynamic model.

In the following, we introduce "computation noise" in addition to

the random forces and measurement uncertainties, and study its effect

on the convergence and equilibrium of the estimation procedure.

I

I

1'

t2



U
V

2. SYSTEM MODEL

The fundamental relations for finding the best estimate of the

message process in the linear dynamical system of the form

S(1) x(t+l) = D (t+lI, t) x(t') + IIt+lI t) w (t)

(2) Z(t) = M(t) x(t) + v(t)

are given by

S(3) x'(t+ I/t) = •'D"(t+l,t) Ax(t/ t -1) + A:(t) Z (t)

(4) 0 "(t+ 1, t) = D (t+ 1, t) - Y'(t) M(t)

T M T)P / -IMT()+Rt

(5) A:"(t) D (t+l,t) P(t/t-1) MT )[(t) I~/-)Tt+~)-

•i(6) P(t+l,t) D ¢(t+1, t) I P(t/ t-i1)-[I P(t/ t-1) MT (t)]

I T (t+ 1, t) + r (t+ 1, t) Q(t) 1-" T (t+ 1, t)

where

D ?(t+l,t) state transition matrix

i x(t) state vector

Z(t) = vector of measurements

M(t) = transformation relating the observables to
the state vector

r (t+ 1, t) = transition matrix for the random force w(t)

v(t) = measurement uncertainty

w(t) = random force

I x(t/t-l) = estimated state vector based on past observation

3



= optimum filter

P(t+1,t) = covariance matrix of the estimation error

R(t) = covariance matrix of the measurement uncer-
tainties v(t)

Q (t) = covariance matrix of the random force w(t)

It is assumed that

(7) E 1w(t) I = E [v(t) I = o

(8) E Iw(t) wT M)] = Q(t)

(9) E [v (t) T ] = R(t)

For the derivation of the formulas see reference (1) and (2).

1IFl
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3. DEFINITION OF COMPUTATION NOISE

No digital computing procedure or device can perform the

operations which are its "elementary" operations rigorously and fault-

lessly because of the finite length of a "digital word". Each time an

elementary operation is performed, a perturbation is introduced which

will cause a parameter to deviate from its ideal value. The non ideal

elementary operations will be called "pseudo operations". They form

a constantly renewed source of contamination, and their influence in-

creases with the number of elementary operations that have to be per-

formed. They are therefore especially important in long computations,

involving many such operations. Long computations will undoubtedly

be normal for midcourse estimation and decision making procedures.

The decisive factor that controls their effect is some kind of stability

phenomenon. And it is the stability of the approximant procedure and

not of the strict procedure that matters. Estimation procedures which

are theoretically identical (asymptotically), but differ in the number and

Il sequence of pseudo operations willbe characterized by a different speed

of convergence to a different equilibrium point.

Notation for pseudo operations:

= A+ where Ti 2 _ (K+1) (K = wordlength)

• : ~ nm ml -(K+ 1)G + N+ r a T, t

I •B= A/B+nd ndl z-+)

The -r's are random variables and assumed to be uniformly dis-

tributed between + 2-(K+). In other words, all bit configurations are

assumed to be equally likely for j2 k, where j designates the truncated

ji digits.

5
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It is remarked that scaling is also a pseudo operation. It is

identical to a multiplication or division, but is carried out with a

multiplier or divisor outside of the range of digital numbers in a fixed

- point organization.

The pseudo operations considered so far are the "noisy operations"

in the failure free mode. These can be characterized by a uniform

error distribution which converges rapidly to the normal distribution

as the number of pseudo operations performed in sequence increases.

But if permanent hardware failures are "allowed to occur" in long

range space missions, the computer may very well degrade its per-
8,9,10,11formance8' . The statistics of pseudo operations in degraded

modes (time of occurrence is a random variable) is not analyzed here.

I6I!
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4. EFFECT OF COMPUTATION NOISE ON THE ESTIMATION ERROR

The estimate of the state vector is computed from

Sx(t+1/t) = CD(t+1,t) x AD(t/t-1)GL (t)xZ(t)

Swhere the index D indicates that the numerical values of the matrices

¢ and A are erroneous:

(10) 'D = 0 *

A** A*I (11) A= A• +A

I The estimation error in step (t+ l,t) caused only by computation noise

is therefore in a first approximation:

(12) 68(t+l,t)71 A I+ I X A*. Z
Al

X ~X, xK-A*. M . x+
A _ &* AIL+ 60X + •AZ - XAMx

The total estimation error in step (t+1,t) is:

(13) X D(t+ l/t) = '(t+ l/t) + 6ýX(t+1,t)

For simplification it is assumed in the following that the errors intro-

Aduced by pseudo operations in calculating x(t+l,t) are negligible against

those introduced in computing (D * and A . Thus,

A6 xA + *Z* A

(14) Sx^(t+l,t) &x+ M Z-8MX

Ii 7



Some properties of 6& and *• * which follow from the algebra of

Tpseudo-operations are listed below:

(15) E ([E) io ( 0

6[x50, = E[•x -E+ MX D 0

Ii whe[e

Efi/t1 = E(t+ Et 1 [ t

TE; [56A- ~ E [6 j E [ A"

E 6 ~i, 1 61) _E ~~i E160K I' similar for 56,

Introducing (2) and (13) into (12) we obtain

6A(t+1,t) = A(t/t-1) + A Mt(t/tt-)

I where

and

t xDt/t~) = (t/t-l1) + 5A(t, t_1)

or

xD(t/t-1) = 65 AMXD(t_ 1/t-2) + -(t/t- 1) + &x(t- 1/t-2)

[



I
Repeated application of the recursion formulas above leads to:

(16) 6x&(t+1,t) 0 (65+ 6&'AM)-. 6'z x(t-i) +

1+1 + • (6rZ+ &A*M)i 3(t-i/t-i- 1) +

i[ + (6T + 6•*M)n 6Ax(t-n)

The effect of errors made in previous computation (observation)

intervals is gradually forgotten as t - oD; but the speed of convergence

I depends on the behavior of the state vector (first term in 16) and estima-

tion error (second term in 16) as a function of time. It depends also,

of course, on the magnitude of 64 and 6C M. Assuming both to be mod-

I erately small, the last term in (16) can be neglected.
A

Because of the dependency of 6x on the state vector, convergence

and equilibrium are not guaranteed anymore by the conditions given in

[I] and[Z] as it will be shown in a simple example in section 5.

It may be sufficient to consider only first order terms:

(17) 6(x(t+lt) 6 x(t) + (6,+ &A*M) *(t/t-1)

t9



[ 5. COVARIANCE MATRIX OF ESTIMATION ERROR (VARIANCE EQUATION

I Applying the expectation operator in a straight forward manner

according to

P(t+1) - E [xD(t+l/t)xDT(t+l/t)

I
and considering the relations given in (13) and (16) results in

(18) Pe(t+l) It (Dt+ 1,t) [PI + 6PI ]D T (t +lt)÷+r(t+l1,t) Q(t)

I rT(t+l,t) +

t0 A ~ (t/ t_1) AT(t t_ 1) IDT I

+ Ef x( t-1 6A,, M-(t/t_1) .. Ttt) MT6 T +

+ E[ 6 MA(t) 6AT(t) MT * TI

L where

iP = P(t)- P(t) MT [ MPMT-R(t)]-i MP(t)

Round-off errors contribute to PD(t+l) in two ways:
A

1. In computing the estimator x(t+l) according to equation (3)
we get the terms

I E I~ M� •x • MT5A: I
f E ISA A AT

10
It



2. In computing the covariance matrix P(t+l) according to

[ nthe Variance Equation (6) we get the terms

6 PI6,T ] and [ 5PIDT]

The covariance matrix of the estimation error is not a determinis-

tic function of the time anymore. Its elements are random variables

because of the randomness of 61 and6P I* Taking the expectation (bias

term), we obtain

(19) E [PD(t+l)] = P(t+l) + E [51 P6 T ] +

!5, E[6 x(t/ t_-l) T(t/t_-1) 60 T +

Ii E [SA* Mx(t)xT(t)MTs 2T +

E[6,A* M6xa,(t, t_ 1) 5x1T(t' t_ 1) MT&/'nT

where

PI = P(t) - P(t) MT I MP(t) MT + R(t) -l MP(t)

iiIt will normally be sufficient to use (20) instead of (19):

U (20) E I PD(t+l) J P(t+l) + E1 50 x(t/t- )x (t/t-1)6T J
f The second term on the right is a diagonal matrix with the elements:

(2 1) 6Pii(t+l) = E 15ij x.j

J
fI 5Pij(t-il) = 0 for i •i

F..I
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In a first approximation it will suffice to apply

E 160• 2 ] x2 .E.0

Thus,

I(22) 6P..(t+ 1) 2 ~XEI 2 J
3

One Dimensional Example

jJ The system is determined by
I..

x(t+l) = (t+Il,t) x(t) + u(t)

z(t) = x(t) + v(t)

whereI
E u. = q and E v = r

I The expectation of the variance at time t+l is according to equation (19)

given by

E [pt+ ) = [O~t+ ) =p(t)r 2 (2 tl ,t)+ pit)r+ -. +-' [p(t)+r

E [6r'- 1 + q
The equilibrium point can be obtained by setting p(t+l) = p(t) = p

SP - Z p-+--2([2 + A2•2)E2_ + E + E x Mt 6•Z
Pr

or (for constant •):

1 p S S f- + r (q+ x (t) E62)

12
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where

2 2 2 2I S = r( E% + E8 - 1) + q + x (t) E69

( Existence and numerical value of the equilibrium depends obviously on

the state variable x(t) and, therefore, on

For

limp = Co

For

lim T exists, but can be intolerably large if the

t -400

coordinate system cannot be chosen properly.

For<I

Ii lim p does not depend on the state variable x(t).
t-*co

I If , is a function of time, then the conditions for existence of

equilibrium are surprisingly reduced: ý can be larger than 1, if, for

j instance, ,(t) is periodic and the time average is -S 1. But it is not

sufficient to require only that, as stated in reference 2

0 < 6 - /•(t+l,t) / _ < 00

1
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6. MODIFIED SYSTEM MODEL

Inspection of Equation (3) shows that propagation of injection errors

and unperturbed motion of the vehicle is somewhat intermixed. The

state transition matrix determines the propagation of injection errors

as well as the unperturbed motion of the vehicle.

If we define two transition matrices, one for the perturbations and

one for the, reference trajectory, then the estimation problem could beJ separated from the problem of integrating the equations of motion. A

system model is shown in Figure 1:

1. E (t1, t) is the transition matrix for the perturbations and

T determines the effect of injection errors at an arbitrary time

t t1 The reference trajectory can be assumed to be recompu-

ted every time our knowledge of the injection conditions im-

I[ proves.

2. M (t1l t) is the transition matrix for the state vector X (t) and

j[ determines the unperturbed state of the system at an arbitrary

time t 1 . The elements of MD may be changed every time our

f knowledge of the actual trajectory improves (the perturbations

tend to zero if the estimation procedure converges).

I We estimate now the perturbations x(t) and perform the computa-

tion of the state vector X (t) outside of the estimation loop. We assume

that knowledge of X (t) is required throughout the mission to decide if

corrective maneuvers should be made, and for a more accurate (not

linearized) representation of the system model.

The modified error equations are readily found with

I MD 0MI + 8MD

I E"D E• + E

14
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We note that the round-off errors which are generated during

numerical integration of the equations of motion still contribute to the

estimation error 'D(t):TD
(Z3) •D(t+I)= +1 (t+ l/t) + SA(t+ 1)

II where

I AX`(t + 1) E 4bE (t /t- 1) + M- A''MD (t/t - 1) + M OX tM

or

I
Repeated application of the recursion formulas above leads to:

S(24) 8 D M)(aE (DE + 8 M4D + SA*M)i- (BM+ BE(D)x(t-i)+

L ,.M

+ 1 ( DE + 8 M(i+ aA M)iX(t-) +

S +Z SM +aA M)i-1 aMoX(t-i)
i

and shows that the propagation of round-off errors from previous obser-

vation intervals can be neglected, if 8•M 8, E and 8A are sufficiently

[ small. In a first approximation,

(25) B• (t) =( E ) x(t- i) + M E4+ B+A*M)'X(t-1)+

+ 8MDX(t- 1)

SThe modified covariance matrix is given by

16
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E[PD(t+ 1)] = E [E[D(t+ l/t) D(t+ 1/t)]]

= -=P(t+ 1)+ E [EdPI(t) BEtT]+ E [ 8,X(t) xT(t)a +

I + E[(SMO+ 8El)(t)T(t)(8 DM +8aOT ] + (Z6)

[ + E A* M D (t) x (t) MT A*T1

Round-off errors in the filter operation A* (t) can safely be disregarded

if the regular estimation error ' (t) converges in a mean square sense,

I or, if

ER o.
T N L--oo

If We write therefore

E IEPD(t + 1)] P (t+ 1) + E [ (t) xT (t) 8M.T ] + (2

+ E [iM+ 8E)xt Tt(8x +a E~r)]

With the same arguments as in Section 5, we obtain for the error

in element PD, ii

a P.. (t +1) ~ x x(t) EL8 DI. + a D2 ] + Z X'(t) E[8M0']
ii J Mj E j s)

(28)

We are now in the position to discuss the following case: Suppose

one would like to reduce the effect of round-off errors by estimating the

time independent injection errors x(t 0 ) rather than the current pertur-
L• bations x(t). The state transition matrix is here

E1(tl, t) =1 and 178 = 0

E7



[
But in computing the present state X(t) each time a new measure-

ment is made or each time a decision for a corrective maneuver is

Srequired, the equations of m otion have to be integrated from t to t.

The variance of BM((t, to) increases significantly because of the

increased integration time (Section 7) and may finally become dominant.

This method seems favourable only if M does not have to be computed

with numerical integration.

If we are forced by some reason to determine X(tl) by integrating

t the equations of motion, then it seems advisable to modify our estima-

tion procedure so that (M + bMc() becomes part of the estimation

loop (Figure 2).

The covariance matrix of the estimation error is given here by

the diagonal matrix:

E [PD(t+ 1)1 = E [ 8 MI) X(t) xT(t) 8 = E [I8X(tl) 8XT(tl)J

S__(29)
where 2 0 0 0

0 a 0 0

E [bX(t! 1) XT(tl}] 21' 2

0 0 3 4

The r2 are equal to Var [ui(tM) and given in Table 2.

i

I

I
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1 7. EFFECT OF COMPUTATION NOISE ON THE
STATE TRANSITION MATRIX

7.1 ERRONEOUS PREDICTION OF THE PERTURBATIONS

I A method for computing the elements of the state transition

mxatrix, EI) , has been described in (5). The elements are found

there with six-fold numerical integration of the perturbation equa-

tions

I & (t) = (t) x (t)

"under the appropriate initial conditions. We choose this method as an

example for studying the round-off error propagation, because it is

quite generally applicable and requires especially high computation

accuracy (worst case example).

SwhereWe are not interested here in a complete round-off error analysis

_ the method of integration used,

the form of the equation to be integrated, and

the program organization

1 would have to be considered in detail. We restrict our study to a sym-

metric round-off, Heun's method of integration, and assume optimal

f scaling. We also do not analyze the effect of the equation form on error

propagation. However, we keep ifi mind that canonical transformations

(separation of the variables) could probably always be used to reduce

the accumulated round-off error. Each equation of the system could be

integrated separately by means of the trapezoidal rule and the accumu-l 1 tM

lated round-off error could be made proportional to 1 or -- for
At N

each variable.

We intend to derive relations between the statistical moments of

the round-off errors in the state transition matrix and computation par-

ameters like wordlength and number of integration steps.

It seems desirable for our purpose to obtain mean and variance

in closed form rather than by simulation methods. A circular orbitL
with the state variables r, 0 , r, 8 was chosen, therefore, as an example.

The error Equations (33) and (34) can be solved in closed form.
20



Generalization to non circular orbits and 6 state variables can readily

be accomplished (Appendix A) but not in closed form. We would have to

find polynomial approximations for the solution of the adjoint system
(34). However, the results in this section can also be used to approxi-

I mate the round-off error in the general'case.
The error variables are defined as the deviations of the actual

"from the reference trajectory:

I rr x 2 = OR x3 r rRR

where r and 6 are the polar coordinates of the vehicle with the origin in

the center of attraction.

From the equations of motion

K .
r ' + r 4

r (30)

.4 r.
r

we find readily the perturbation equations (perturbations are assumed

to be caused by injection errors only) with Taylor expansion of the right

side of (30). The perturbation equations are

1 (t) = x3 (t)

S• (t)= x 4(t)

x 3 (t) 3,, 2 x (t) + Zrwx 4 (t) ; w = 9 = constant (31)

= r

and could be integrated in closed form. But we integrate numerically

with Heun's method'* [4] to study the propagation of round-off errors.

We compute first the auxiliary values

"'Heun's method is less accurate than, for instance, the Runge
Kutta method, but simpler to analyze. Its accuracy seems sufficient
for our objective "to study the effect of wordlength on the accuracy of

4 the state transition matrix. 21



U
x[ (tj) x xi(tjl + "Atf.1Lj (t j-l)'''' xn(tj~ )

~~ j 1~ j-1Ijln-J

and then

xi(t.) = xi(t.-l) + f .x (t . x.. (t + . x'- i.) x n. j

i=I1..., nandj=l..., N

The determination of round-off errors can be considerably simplified,

if we assume that At is a small quantity so that multiplication by A:t

shifts the doubtful figures in f i(xI" ' x n) into those which are dropped

f in the last round-off step. We have the identity

•".fix1 (t~). tnt~) -•!t f xl (tj~). nt~)

where the bars indicate round-off values.

If we are not interested in higher powers of it, then we may write

for the jth step:

x.= xi +'t x +e
-lj I 3j-1 + I

x 2j = x2j-l + At x4j-1 + 2 e2I
x3j x 3 jl + wt (32 + 2rwx xdj.) + 2 3 (32)

3j 3j-1 + ilj-1 +4-

Xj x - tx 2 e
S4j-1 r 3j-1 + 4

twhich we have to compare with

xlj = Xlj-_ + At x3j-1

S4j r r3j-1
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Introducing the error variables

U. .= X, . - -X. .
13 1 j 1 j

we can write the error equation for step j

uj = Ulj- + at Ix 3 j-1 x3 j-1 I

U4j = u4j-, + At [-"(; X3j -I + (!Iý j. x -
r r 3j-1

or U j = ulj l + At u3j - 2 e1

u 2j = u 2 j-l + At u4j-1 2 e2

u3 j = u3j 1 + At (3w 2 ulj- + 2rw u4 j.l) - 2 e3  (33)

To solve Equation System (33) we introduce the adjoint system

X lj x lj-1-At. 3w2 x 3

2j 2j-1

Xj =3 j -At (> I x>,•4• ) (34)3 3j-I Jr: ~

>4j = \4j - At t 2j + 2rw X )3j
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and infer

I ( lj lj- lI Uj) + (X 2 juj - 2j-1 '.2j-1 ) + () 3 u3j - x3j- 1 u 3 j-) +

+ (X4ju 4 j- x4j.l u 4 j -1) = I 2(lj 1 + X 2 j 2 + X3j'3 + X4j e 4 )

Summing over j from I to N we obtain

L 1  (tM) u 1 (tM) + X2(tM) u 2 (tM) + x 3 (tM) u 3 (tM) + .4 (tM) u 4 (tM)

N

= 2 0(lI + X 2j e 2 + x 3j e 3 + X4j e 4 ) (35)

j=1

where

tM = N~t = total time of integration

i
ZAt = integration step

L. Treating the e's as independently and uniformly distributed, we

can write down the variance of (35)

Var Xi(tM) ui(tM) = 4 x 2 + >1 2 + 2 + \2 0 2 (36)
lj + Y 3 2j + X3j 4 kj)c (6

i=l j=1

where o- designates the round-off error variance in one integration step.

The sums on the right can be looked upon as Rieman sums and can be

replaced by the integrals

Var[ xi(tM) u (tM) : M (X 2, (t) + X 2(t) + > 2(t) + X 2(t) dt

1 (37)

In order to get the variances in ui separately, one has to impose on

1' X .(t) the terminal conditions:

24



F

I. = I , M) 2(t M) 3 (tM) = X4(tM) = 0

2. 2•(tM) = 1 , )l(tM) = )3(tM) = X4 (tM) = 0

3. ) 3 (tM) = I , Xl(tM) = Z(tM) X4 (tM) = 0 (38)

t 4. k 4 (tM) = 1 I Xl(tM) = k2(tM) = XB(tM) = 0

I
SOLUTION OF THE ADJOINT SYSTEM

We can write the adjoint system in differential form:

2 -30 )

x- + (39)

3 1•r 4

4 2 ? r wrX)3

F. and obtain

X _ _LC -- Ct - 3wC e t + 3wC e-Wt
- r 4 r 1 2 3

)z, =Gc
x2 1

3 I + C e Wt+ C e (40)

rWt -Wt

4 = 4 - 3C1t - 2rC2 e + 2rC3 e

For the four sets of terminal conditions we get four sets of solutions

(Table 1),
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Terminal Conditions

[ > (tn) z 2(tM) >3 (tM) 4 (tM) Solution of the Adjoint System

1 0 0 0 (t)= 3 cos hw(tM - t) - 2

> 2 (t) 10

M ) = sin hw(tM- t)

4(t) = -[ fjcos hw(tM- 0 ]

0 1 0 0 x (t) 3w (t 0- t) 3 sin hw(tM t)I r (M r r

X2 (t) = I

k3(t) =-L [i - cos hw(tM- t)]

>1 (t) = 3 (tM- t) sin hLw(tM- t)

0 0 1 0 X (t) = 3 w sin hw (tM- t)

X2 (t) = 0

3 (t) = cos hw(tM- t)

4 (4 (t) = Zr sin hw(tM- t)

0 0 0 1 (t)= 3 ! [1 - cos hw(tM t)
2 (t) = 0

)X 3 (t) = - 1 sin hw (tM- t)
r

X4(t) = 3 - 2 cos hW(tM- t)

[
Table 1. Solutions of the adjoint system for

various terminal conditions.
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The resulting variances of the round-off errors at an arbitrary

time tM are tabulated in Table 2. In a first approximation, the vari-

ances in the coordinates xl, x 2 and x 4 increase proportional to the

number of integration steps N, but the variance in x 2 increases pro-3 2
portional to N3.

f Var ui (tM)1 First Approximation
W tM << I

[ 2 4N 9 1 r2 1

(1 "r s--in h ( m + 17 1 6r-t' -
,3 ~ ~ ~ ~ Nz--,zW

"2 Z +4N-- -9 sin h (2WtM) +
tM W-r

2  
4w

3
r

2  
W3 M

" 1+ 8 -- ' + 1 s in h (2tM) 2 2

"--"+ + - ~sinh(2atM) - l

Wrz , 3r ~3, M

or
1tM + ItM )csh (t)+ (3 .2 + 3) t3 12N 3Ate20,

S-(2-4N + sin h (ZwtM) +3)"

rM 4 w 4N r
2

2r-K 2 - 92124,2)

2M 4N Z or~

0 11*8~+M W w sinh (ZwtM) +4N0

STable 2. The variances of the round-off errors after integrating
the perturbation Equations (40) with Heun' s method.
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The error in the state transition matrix -D (t1, t) now can be

characterized by

E, [BE oD 0

and

2 0 2 2I 1 Cr 0.I1

2 2 2
-2 0.o2 "

EIS- 2 0 02 0. (41)

2 0 2 2
4 0o4 a"4

where oxr is equal to Var[u (t) and given in Table 2.

0.is qa to L M

I
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[ 7.2 ERRONEOUS PREDICTION OF THE STATE VECTOR

Restricting ourselves again to an in-plane trajectory of a satellite,

f w.e have to integrate two second order differential equations of the form

(30).

[ Setting

r = X 1 , 9 = X 2 , = X3 , = X4 ,

we can write the equations of motion as a system of first order equations

1 Xl -x3
SX = 4

kX3 K2 +X 1 X = fl (Xl X2 X3 X4)
x I

3 xI f2 (X1, X2 , , X4 ) (4Z)

[ and obtain the error equations similar to those in Section 7. 1

u Uj = U'lj- I + At u 3j -1 2 eI

[u2j = u2j + At u 4j -1 2 e2

[ u.3  = u 3  i t(.-. 4 -l3 2)u 1  + (2Xl X 4 ) u 4 j-2e 3.u3j = u,3j -l + At 1 K + 4 u1 +(X1x4)u4 2

4j u4j -I 12 11U l 4 6

(43)

2
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The only difference is that the coefficients are functions of time

here and not constants. This does not complicate matters too much

because coefficient accuracy is not critical. Nominal values of the tra-

jectory suffice. We may go even one step farther and restrict ourselves

I to an approximately circular orbit and determine the coefficients by

setting 

X 1 = r Lt constant

X3 0

X = w 2 •constant

The equation system (43) reduces to (33) and can be solved with the

elementary methods described in Section 7.1.

The error vector

a X(t 1 ) = -D X(t)

now can be characterized by

E [SX(tl)] 0

and

20-1 0 0 0

0 0" 0 0
[E [8X(tl) XT~tl)] = 0 2 o (44)

So o o o4

where the 2 Fui (t and given in Table 2.
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8. EXAMPLE: SATELLITE TRAJECTORY ESTIMATION
BY THE ONBOARD DIGITAL COMPUTER

We assume an approximately circular orbit in the terrestrial field.

The actual in-plane trajectory is perturbed around a precomputed ref-

erence trajectory (r = 2.2 107 feet). Observations are made period-f ically and used in the spaceborne digital computer to estimate the current

position and velocity in the trajectory plane according to Figure 2.

We are interested in finding the estimation error caused by the

finite wordlength in the digital computer, and to separate the effect of

wordlength K,

observation interval tM, and

number of integration steps, N, in one observation interval

on the error distribution. We know, that the error is mainly determined

by the round-off errors in the numerical integration of the equations of

motion. The variances of the accumulated error are given in general

form in Table 2. Figure 3 shows the error propagation in the 4 co-

ordinates r, e, r, 6 for our example as a function of the integration

time tM and for a 0.5 seconds integration interval.

The error grows quite rapidly with N(or tM = NAt). The result is

not in agreement with the commonly 6 assumed error growth propor-

tional to N. It does not seem realistic to assume that the round-off

errors grow proportional to N independently of equation structure, inte-

gration method, coordinate system, etc. It is noted in Table 2 that the

error grows proportional to N (in agreement with ref. 6), but only for

three of the four state variables and for a very short integration
S~time.

The curves in Figure 3 are independent of the computation accu-

racy. If we multiplya i* with the variance, a , of the round-off error
2

in one integration step, we find the actual error variance a. - Table 3.

We look now for a geometrical representation of our error co-

variance matrix, and introduce the ellipse of concentration. The ellipse

(Figure 4) is defined as a curve enclosing all points which deviate from

the reference point with a probability at most equal to P.
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IL

I REFERENCE TRAJECTORY

I
1

Figure 4. Ellipse of concentration as a performance measure for

I the digital computer in midcourse navigation.
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Let x and y be cartesian coordinates with respect to the centre

Iof the ellipse (on the reference trajectory)

x = Ar

I y = rAO

where Ar and AO are small,

then the equation of the homothetic ellipses is

X - 2c2 (45)
a2 r 2a2

1 2

where 2 and 2 are given in Table 2 and Table 3. The constant c 2 is

X distributed with 2 degrees of freedom. The probability of falling out-

side of the ellipse is obviously given by

P = P(X2 > 2c). (46)

It is noted that in our example (Figure 4) the major axes of the ellipse

I always lie in the direction of r and perpendicular to r (downrange). But

a coordinate transformation in equation system (4Z) would change length

j and direction of the axes.

The effect of wordlength on the error ellipse is shown in Table 4.

•I The area covered by the ellipse grows in our particular example from

3. 3 102 feet 2 to the discouraging magnitude of 1.7 1010 feet 2 if

we require a probability of 99.9 percent of not falling outside the

ellipse. Obviously, we may generate any size ellipse and require any

wordlength for the digital computer, if we can persuade ourselves to

more or less optimistic probability figures (Figure 5).

I
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K a [feet] b [feet] F [IfeetZ]

124 1.8 x 104 3.05 x 105 1.7 x 1010

28 1.12 x 10 3  1.91 x 104 2.1 x 107

1 30 0.282 x 103 0.47 x 104 1.35 x 106

2 3 41 3Z 0.7 x 10 1.19 x 10 8.4 x 10

34 1.76 x 101 2.98 x 102 5.3 x 10 3

36 4.4 7.45 x 101 3.3 x 102

I

Table 4. Half axis and area of the 99.9 percent error
ellipse K = word length, observation inter-
val 10 minutes, approximately circular orbit
with 2.2 x 107 feet radius.

II
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9. SUMMARYI
The error ellipse (ellipse of concentration) has been introduced

as a performance measure, and its axes and area have been expressed

in terms of the computer wordlength, the time interval between obser-
vations, and the number of integration steps for a particular class of

Iestimation systems. Characteristic of the system is that the equations
of motion are solved by numerical integration and not analytically. The

I conclusions about the growth of the estimation error are, therefore,
rather pessimistic. A computer designed to operate satisfactorily in

I- our example certainly would also be appropriate for more elegant navi-

gation systems.

As a sideline to our main problem, it was necessary to obtain

some information about the round-off error propagation in numerical

integration of first order differential equations (second order equations

can readily be reduced to first order equations). The error moments
have been found by means of a first order perturbation method and have

been expressed in terms of the adjoint solutions of the error equations.

In general, the error variances grow with some power of N. The power

j depends on the integration time, number of variables in the equation

system, and on the form of the equations (coordinate system). The co-

efficients of the differential equations have been made approximately

constant. Otherwise, the adjoint equations cannot be integrated in closed

form. If we are satisfied with first approximations of the estimation error

and if we may assume convergence of the regular estimation error to a

moderately small equilibrium (steady state), then the problem of finding

a performance measure for the digital computer during midcourse navi-1. gation is reduced to the task of determining the round-off error propa-

gation during numerical integration of the equations of motion and

perturbation. Table 2 gives closed form expressions for the accumulated

round-off error variances assuming approximately circular orbit and
in-plane two body motion (Section 7.1 and 7.2).
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The effect of limited computer accuracy on the estimation error

f can be determined with the Formulas (28) and (Z9). Both formulas are

approximations. Neglected are:

a. Propagation of round-off errors from previous observation

intervals against the error contributions of the last interval.

Round-off errors from previous observation intervals would

contribute only in pathological cases where X(ti) decreases so

rapidly with ti that 2412X(t-2) is not neglegible against
[ 64x(t-l).

b. The effect of the erroneous filtering operation A:(t) + 6A

It can safely be done only, if the regular estimation error

3(t) converges with the increasing number of measurements:

lim E [ T] = 0

N--oo

The errors in the state transition matrices M or EDare associ-

ated in (28) and (29) with the perturbation vector x(t) or with the state

vector X(t). Even very small 6Smay contribute significantly to the

estimation error, if x(t) or X(t) are sufficiently large. A typical ex-
12ample is the transition matrix of injection errors for a circular orbit

The matrix contains elements which grow with t. Unbounded perturba-

tion components xi(t) and unbounded solutions of the variance equation

[ must be expected.

We notice, that computation noise may increase the uncertainty

in our knowledge of the system state, even if a large number of observa-

tions have been made. We found that the covariance matrix of the com-

putation noise appears to be additive to the covariance matrix of the

random force u(t) in (18). We may define, therefore, a Feneralized co-
S~variance matrix

Q"'( t) = Q(t) + [PD(t)-P(t)

and recognize that Q (t) may be unbound. We conclude that theorem 4

in reference Z does not apply for dynamic systems which are corrupted

by computation noise.
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APPENDIX A

GENERAL ADJOINT DIFFERENTIAL EQUATIONSIFOR THE ROUND-OFF ERROR

The equations of motion are generally given by a nonlinear systemI of second order differential equations. We write it as a system of first

order differential equations:

Xl= X 4

-i X 2  X5

5C 4 = f 1 (Xl ' X 2 , X 6 ) (47)

5C= f 2 (X1  X ....2 X 6 )

i x 6  f3 (Xl' X . . . . . x 6 )

and linearize by Taylor series expansion around the reference trajectory.

Int~roducing the perturbation coordinates

x.= X. - X i = 1 . 6
i i,R ''"

we obtain for the perturbation equations:

x2= x51 X4I
:k 3= x6  (48)

16 6kx4=_ aI -fl i Fli (xid
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6 6

X5 x. = F 2 i(x)i=l l

6 6
x 6 = I 0X- -- x Fi (xi)

6=~ 1X 3i (I)

Numerical integration on a digital computer using Heun's method leads
to round-off errors which can be characterized in step j by the e:rror
equations:

Ulj = Ul -1 + 4 j-1 1•].

SU2j =u 2 j -1 + At U5jl - 2 G2

I u 3 j u 3 j- I + At u 6 j - Z1 3

Ii 6 a 1
U + Atli u - 2 e4

4j u4j- 1 + i ij- 4

u5j u5j- 1 + At U. 1
zi u - 2 e5il

At i ij 1  2E

u6 j u 6 1- 1 + At u 1 -i2 6

I i_ l

where the e. designate the error in one integration step and u ij
xi (t) -xi (tj)

[
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We solve the Equation system (49) by means of the adjoint

equations

3

Xj = l At 3 aFFKI1ij- I ~ >1 _ _ (K + 3), j

I K=Ix 2j = X2j - I -At a, FK2
i z~ axz 2 (K + 3), j

x~j = 13j -l At 3 6FK33j 3 - 1 ax 3  N(K+ 3), j

(50)

' 4 j '4j 1 - At { li + FK4 x(K+3)
K=l,

Xj- 5- AtI. >12 } FK
5j - 1 x K=I x 5  (K+ 3) j

j= x 6 j-I At{ 3 j + 3( K
6j K =I 6j 13 x6 (K + 3) ji

K =1 f

and obtain the variance of the round-off error in the coordinates
xi(tM) at time tM readily with the argumentations in Section 7. 1:

Var 6 i (tM) ] = 4tMt f 6x x i (t) dt. (51)

l i
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